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ABSTRACT

Trajectory analysis confirms the basic feasibillity
of a "Minimum Apollo Applications Program." However, an elliptical
orbit must be used to stay within the Apollo Block II service
module RCS propellant limits. An orbit is selected for the
Mission Support Module Laboratory (MSML) having an altitude of
130 x 240 nm and an inclination of 29°. This provides an orbit
lifetime of at least 60 days, an RCS propellant requirement for
rendezvous maneuvers and backup deorbit that is within the Block II
tank capacity, an ample payload margin for the MSML launch and the
CM/SM launch, and reasonable launch window freedom to accomplish
rendezvous.
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1.0 Introduction

The material presented in this memorandum was prepared
in support of a study of a "Minimum Apollo Applications Program"
described in Reference 1. Our task was to determine suitable
orblt parameters for the Mission Support Module Laboratory (MSML)
of the study and a scheme for rendezvous of a CM/SM with the
MSML subject to the following constraints:

(1) The MSML must have a 29-degree inclination and a 60-
day lifetime when a +20 atmospheric density is assumed.

(2) The SM-RCS propellant reguirements must not exceed the
Apollo Block II total of 1278 pounds.

(3) Both launch vehicles are Saturn IB's.

(4) There must be at least one daily launch opportunity
for the CM/SM over a 5-day period after the MSML launch.

The requirement that the SM-RCS consumption not exceed
the Apollo tank capacity imposes restrictions on both the ren-
dezvous and backup deorbilt maneuvers, which are the two principal
demands on the RCS. Previous studies have shown that the hybrid-
stable-orbit rendezvous 1s about the most efficient in terms of
RCS propellant consumption, but even if this technique were used,
some 600 pounds will be required for the rendezvous phase of the
mission, leaving about 600 pounds for backup deorbit. This sug-
gests flying the mission in an elliptical orbit with backup de-
orbit executed at apogee only. However, this approach is limited
for, as the eccentriclty 1s increased (and the orbit parameters
are adjusted to hold lifetime constant), the deorbit requirements
of the prime system, the SPS, increase, because the SPS must be
capable of safely deorblting the CM/SM from any point in the orbit.
In fact the SPS deorbit Av from perigee (worst case) increases
faster than the RCS backup deorbit Av from apogee decreases. Thus,
as the RCS backup deorbit requirement is reduced, the total CM/SM
welght increases.
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The increased SPS propellant can easily be accommodated
in the available tanks which are very large, but the net increase
in CM/SM weight poses a problem, as it can exceed the launch vehi-
cle capability if the orbit eccentricity is increased too far.

The requirement for a CM/SM launch opportunity on each of filve
days after MSML launch further modifies the allowable orbit eccen-
tricity since CM/SM insertion by a direct ascent launch into
points on the orbit other than perigee (the optimum) will be
necessary.

The following sections present details of the analysis
and selection of orbit parameters including calculation of orbit
lifetime and deorbit requirements, an SM propellant budget, launch
vehicle performance and launch window analysis. It should be
noted that this is a preliminary analysis undertaken solely tTo
demonstrate the feasibility of the MSML mission. Hence, tra-
jectory optimization was not carried beyond the point necessary
to accomplish the desired objective.

2.0 Lifetime and Deorbit Requirements

| An orbit lifetime analysis of the docked CM/SM-MSML
configuration was performed to determine which orbits would have

a lifetime of sixty days (Reference 2). A +2¢ atmospheric density
was used in the calculations, ensuring with high probability that
the actual lifetime would exceed the calculated value. A circular
orbit established at 170 miles decays in 60 days. The same life-
time can be had for an elliptical orbit with a lower perigee and
higher apogee. Figure 1 shows the locus of all such combinations
including five sample cases that were analyzed further and also
appear in Table I.

Computation of the SM-RCS backup deorbit requirements
for each of the five cases requires determination of the SPS
propellant requirements to obtain the proper CM/SM initial weight.
We have chosen to use the SPS only for the primary deorblt maneuver;
this permits sealing the system after fueling and possibly increases
reliability. It is possible because, as will be shown, the RCS
propulsion is sufficient for the necessary rendezvous and backup
deorbit maneuvers. The hybrid stable orbit technique is used for
rendezvous. This requires several small burns of less than 20
ft/sec impulse, too small for efficient use of the SPS engine.

The reentry trajectory 1s usually specified in terms of
acceptable combinations of velocity and flight path angle at
400,000 feet (Reference 3). However, for preliminary planning an
acceptable approximation for low-altitude AAP missions is to target
the SPS deorbit trajectory for a vacuum perigee of -40 nm and the
RCS backup deorbit trajectory for a vacuum perigee of +30 nm,

This method was used to calculate the deorbit requirements detailed
below.
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Deorbit from perigee is the most demanding case for
the SPS and will therefore determine the SPS requirement for
the mission. The maximum AV requlirements for the prime deorbit
system, the SPS, have been tabulated in Table 1 for the five
cases considered. The corresponding SPS propellant quantities,
assuming a CM/SM weight of 25,442 1bs (without SPS propellant),
are also given. Since the SPS is used only for deorbit, the
entire SPS budget is based on this requirement.

The RCS backup deorbit requirements were calculated
for an apogee burn that reduces perigee height from the mission
orbit wvalue to +30 nm. It was assumed that the backup system
must deorbit the CM/SM with the full SPS propellant load still
aboard. Thus the corresponding SPS propellant weight was included
in the CM/SM overall weight before the RCS calculations were made.

Table II presents resulting RCS budgets and the margin
for each case with respect to the 1278 1b Block II RCS usable
propellant 1limit. Cases 1 and 2 have negative propellant margins;
whereas Cases 3, 4, and 5 have progressively increasing positive
margins. The Case 4 orbit, 130 x 240 nm, was somewhat arbitrarily
chosen for the MSML simply because it is the most circular orbit
where the propellant margin is greater than 50 lbs.

3.0 CM/SM Propellant Budget

The hybrid stable orbit rendezvous technique was chosen
for rendezvous because it requires relatively 1little RCS propellant.
Figure 2a illustrates the relative motion of the CM/SM in a coor-
dinate system centered at and moving with the MSML. This is a
curvilinear coordinate system; the vertical axis denotes altitude
difference, the horizontal axis denotes true anomaly difference
multiplied by a, the MSML orbit semi-major axis, with the MSML's
forward direction to the left.

The nominal rendezvous sequence is as follows:

(1) The CM/SM is inserted by the launch vehicle at Point 1,
about 60 nm behind the MSML with zero relative velocity.

(2) The CM/SM coasts at this stable point for a suitable
time.

(3) A retrograde burn of the RCS at Point 2 creates a
perigee height differential of such magnitude that
the next apogee, Point 3, will occur 20 nm behind
the M3SML,

(4) The terminal phase 1s initiated from Point 4 by an
RCS burn, called TPI, which is calculated to eliminate
the position separation exactly one orbit later. This
burn will be posigrade if the initial separation be-
tween the MSML and CM/SM is greater than 40 nm.
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(5) The terminal phase of rendezvous is completed at
Point 5 with a braking burn, TPF, which eliminates
the relative velocity.

Insertion of the CM/SM will be made as close as
possible to perigee of the MSML for reasons of launch efficiency,
but within the launch window limitations explained in Section 4.0.
Position and veloclity components at insertion will be in error
due to guidance inaccuracy and Saturn IB performance deviations,
with the largest dispersion expected in downrange position. The
60 nm offset in the insertion position is selected specifically
to accommodate 30 dispersions of +40 nm in this coordinate without
risking insertion forward of the 20 nm point.

The Av and propellant regquired in slep 3 Lo lnitlate
the phasing maneuver is proportional to the distance to be made
up. Allowing as large a range as 40 +40 nm incurs a heavy cost.
This cost can be halved if two orbits are used for phasing instead
of one, as illustrated in Figure 2b. Accordingly, we assume 2
phasing orbits would be used if the insertlon offset turns out to
be greater than 60 nm and 1 orbit if it is less. The coast period
(step 2) would be adjusted to keep the total rendezvous time the

4+l A~ 1 P b 1 T A 4+~
same., In thies Wiy, °nc y“aSL'lg mancuver can be held to less than

15 ft/sec. The coast period may also be adjusted to improve
ground coverage of critical portions of the flight and to control
the time of final approach, and thereby, the solar i1llumination
of the target vehicle.

The final approach transfer path has been assumed to
occupy a full 360° of travel, like the phasing maneuver, in order
to do it with the least possible fuel. It remains to be seen
whether this 1s acceptable. Closing speed and line of sight rate
will have to be tested with man-in-the-loop simulations. Normally,
a 270° transfer would be used, but the substantially larger Av at

both TPI and TPF make thils unattractive in this minimum performance
study.

A detalled SM-RCS propellant budget is presented in
Table III and a timeline 1s presented in Table IV. Sufficient
propellant is budgeted for the phasing maneuver for a maximum
required catchup rate of 40 nm per orbit. For all maneuvers
excluding backup deorbit, the total SM-RCS propellant required
is 589 1lbs. With backup deorbit and the gaging allowance included,
the total SM-RCS propellant required is 1197 1lbs. Hence the use
of the hybrid-stable-orbit-rendezvous technique with the MSML in
a 130 x 240 nm orbit results in a usable SM-RCS propellant margin
of 81 1bs.
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4.0 Launch Vehicle Performance and Launch Window Analysis

The MSML orbit is 130 x 240 nm at an inclination of
29.0 degrees. The rendezvous technique chosen is the hybrid-
stable orbit, which requires the CM/SM to be inserted into the
same orblt as the MSML. Thus the insertion gltitudes and true
anomalies of the CM/SM could range from 130 to 240 nm, anc 0
to 360 degrees respectively.

The ability of the Saturn IB launch vehicle to insert
the unmanned MSML into the selected orbit, 130 x 240 nm, was
investigated using the BCMASP simulator (Reference 4). Runs
were made both with and without SLA/Nose Cone jettison during
boost. The results plotted in Figures 3 and 4 show that the
MSML payload can be inserted at any point in the desired orbit
regardless of whether SLA/Nose Cone jettison 1s used. Figures
3 and 4 are asymmetrical because when the insertion true anomaly
is negative, the targeted flight path angle is negative. This is
a more difficult condition to achieve. This will also be true
for the CM/SM.

The CM/SM launch vehicle capability vs true anomaly
is presented in Figure 5. For insertion true anomalies near
apogee from -140 to +145 degrees, the CM/SM launch vehicle can-
not insert the required minimum paylocad into orbit by a direct
launch. This 1is not a serious limitation, however, because
an orbit can be established at MSML launch time that permits CM/SM
insertion near enough to perigee at each launch opportunity over
the next 5 days.

It should be noted that a multi-burn ascent with a
parking orbit and Hohmann transfer would have increased the pay-
load significantly and made it insensitive to the relative posi-
tion of the launch pad and perigee. However, the SPS engine
would have to be used, conflicting with our desire to keep this
system sealed until deorbit.

The launch window is defined as the time interval
during which the plane of the target orbit is within the plane-
change capability of the CM/SM launch vehicle. Launch oppor-
tunities are the times within the windows that the phasing is
correct for launch. It is beyond the scope of this preliminary
analysis to determine when the launch opportunities occur in the
launch windows. However, we are concerned with whether or not
an opportunity occurs for every window.

The launch period of the CM/SM considered is 5 days,
including the day of MSML launch. Using the assumptions of a
CM/SM launch-vehicle plane-change capability of 0.5 degrees, a
CM/SM launch-site latitude of 28.522 degrees, an MSML instan-
taneous launch azimuth of 82.6 degrees, and the MSML orbit
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parameters as inputs to the "Launch Window Determination Program"
(Reference 5), results in launch window lengths of 108.37 minutes
for Day 0 and 127.67 minutes for Days 1 thru 5.

The period of the MSML orbit relative toc a rotating
earth is 96.89 minutes. Since this period i1s less than both
CM/SM launch window sizes, at least one CM/SM launch opportunity
will occur in every launch window. Thus, over the 5-day period
there is a minimum of six CM/SM launch opportunities. Daily times
of the launch window opening and closing, were generated by the
"Launch Window Determination Program," and are presented in
columns 2 and 3 of Table V. Time 0 1s MSML launch.

With the launch windows for the CM/SM established, the
final parameter wnich must be determined is the true anomaly of
the MSML insertion which will provide acceptable values of CM/SM
insertion anomaly over the 5-day launch period. The variation
in true anomaly at CM/SM insertion is due primarily to the daily
rotation of the line-of-apsides, and the motion of the CM/SM
launch site relative to the plane of the MSML orbit as the CM/SM
launch site passes through the launch window. The rotation of
the line-of-apsides causes a change in the position of the MSML
subperigee point reiative to the opening of the launch window,

If the CM/SM is launched simultaneously with the MSML,
the targeted true anomaly of the CM/SM, WC, is equal to the true

of the MSML at MSML insertion. W, for the remainder

anomaly, W c

T’
of Day 0 is approximated by:

WC = WT + {%Z(QecoséL - QlcosoL + mi] (4.1)

where: t2 = the time in the launch window, O to 108.37 minutes
Q = 0.25068 deg/min (rotation rate of the earth)
-0.00504 deg/min (nodal precession rate)

= 0.00814 deg/min (rotation rate of the line-of-
apsides)
¢ = CM/SM launch site latltude.

e De
|1}

For succeeding days, Days 1 thru 5, WC 1s approximated
by:

Wy = Wy + [-u.52 - o t(K) + ’c3(9ecos¢L - lecos¢>L + J,)] (4.2)

1, 2, 3, 4,5
the time of launch window opening on the Kth day
the time in the launch window, 0-127.67 minutes.

where: K

ct
—~
>~
~
il
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Equations 4.1 and 4.2 assume the eastward motion of
the launch site due to earth rotation 1s substantially parallel
to the orbit plane. Since the latitude 1s nearly equal to the
inclination and the launch slte remains within +.5 degrees of

the plane over the period of interest, this is a pretty good
approximation.

Equations 4.1 and 4.2 differ because on Day 0 the
launch window begins with the MSML launch which is equivalent to
the first coplanar crossing on succeeding days. See Figure 6.
The second term in Equation 4.2 is the central angle, measured
in the plane of the MSML orbit, from the opening of the launch
window to the first coplanar crossing. The third term accounts
for the change in central angle of the subperigee point between
lauitch window openings.

In Table V specific launch window limits are listed
for each day along with the range of insertion anomaly that would
be required of the CM/SM. If the MSML is inserted at perigee,
Wy = 0, the CM/SM insertion varies from 26.76° at the close of

Day 0 window to -61.81° at the opening of the Day 5 window. As
can be seen from Figure 5, this range is entirely acceptable.
Additional payload margin can be assured, however, by inserting

the MSML at WT = +18°, As shown in the final column of Table V,

the CM/SM insertion would remain within +A44° true anomaly.

5.0 Summary

An MSML orbit and CM/SM rendezvous technigue were
found which met the constraints set forth in the "Minimum AAP"
study. The MSML orbit selected is 130 x 240 nm, which has an
SM-RCS backup deorbit requirement of 540 1bs. Utilizing the
hybrid-stable-orbit-rendezvous technique, the other SM-RCS pro-
pellant requirements are 589 1lbs. The total SM-RCS propellant
requirements, including gaging are 1197 1bs which results in a
positive margin of 81 lbs.

At least one CM/SM launch opportunity per day over
the 5-day launch period is guaranteed by inserting the MSML at
a true anomaly of +18 degrees. Hence, within the prescribed
constraints the basic feasibillity of the MSML mission has been
established.
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BELLCOMM, INC.

SubjJect: Orbit Selection and Propellant
Requirements for a "Minimum Apoilo
Applications Program" - Case 610
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